Copper in the Rotor for Lighter, Longer Lasting Motors
نویسندگان
چکیده
This paper reviews the advantages of substituting die-cast copper for aluminum in the motor rotor. This advance in motor technology has been long sought by the motor industry but short die life due to the high melting point of copper frustrated attempts to manufacture by pressure die casting. The nickel-base alloy hot die technology developed to solve the manufacturing problem is briefly reviewed. Development work done prior to the present program and commercial motors derived from that work have focused on the increased electrical energy efficiency achievable by using copper with its higher electrical conductivity in the rotor. Performance characteristics of example industrial motors are presented. Modification of the conductor bar shape to control in-rush current and starting torque to accommodate copper in the rotor will be discussed. Modeling by motor manufacturers has shown that by using copper in the rotor, a lighter motor than an aluminum rotor motor at the same efficiency can be built. An example of weight savings calculated for a 15 Hp (11 kW) motor is presented. Data presented here show that motors with copper rotors run cooler. Industry experience shows that cooler operation translates to reduced maintenance costs, improved reliability and longer motor life.
منابع مشابه
Copper-Rotor Motors + Variable Frequency Drives Maximize Savings at Water Treatment Plant THE COPPER SOLUTION: Copper-Rotor Motors
The New York State Energy Research and Development Authority, NYSERDA, seeks to reduce the state’s energy consumption. Among its many activities, the authority supports incentives to purchase high-effi ciency motors. Ultra-high effi ciency, copper-rotor motors (CRMs) have been available for several years, but NYSERDA lacked industrial data on them. The authority therefore initiated an R&D progr...
متن کاملA New Doubly Segmented Structure for Switched Reluctance Motors with High Torque Capability
In this paper, a new magnetic structure for switched reluctance motors is presented. In this structure, both stator and rotor has a segmented topology and there is no magnetic flux path between two stator/rotor segments or any possible combination of them. The proposed segmental structure may be considered with different number of phases as well as different number of segments per phase for any...
متن کاملExact Modeling and Simulation of Saturated Induction Motors with Broken Rotor Bars Fault using Winding Function Approach
Winding function method (WFM) provides a detailed and rather simple analytical modeling and simulation technique for analyzing performance of faulty squirrel-cage induction motors (SCIMs). Such analysis is mainly applicable for designing on-line fault diagnosis techniques. In this paper, WFM is extended to include variable degree of magnetic saturation by applying an appropriate air gap functio...
متن کاملTorque Ripple Reduction in Switched Reluctance Motors by Rotor Poles Shape and Excitation Pulse Width Modification
In this paper, at first, a 24/16 three-phase switched reluctance motor is designed, then the rotor poles shape tips corrected for reduction ripple of single-phase torque waveform. By doing this, the single-phase torque waveform has a flat surface and consequently, the single-phase torque ripple is reduced. Also, due to the commutation between the machine phases, the torque drops during this tim...
متن کاملNeural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors
This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in ord...
متن کامل